Data collection

Siemens $R 3 m / V$ diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical (four ψ scans)
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.42, T_{\text {max }}=0.48$
5162 measured reflections
4880 independent reflections

3741 reflections with

$$
F>4 \sigma(F)
$$

$R_{\text {int }}=0.0155$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 19$
$k=0 \rightarrow 35$
$l=0 \rightarrow 12$
2 standard reflections every 250 reflections intensity decay: none

Refinement

Refinement on F
$R=0.0443$
$w R=0.0597$
$S=0.85$
3741 reflections
419 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}(F)+0.0049 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.48$
$\Delta \rho_{\text {max }}=1.87 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.67 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)
Absolute configuration: Flack (1983)
Flack parameter $=$ -0.003 (19)

Table 1. Selected bond lengths ((\dot{A}) and angles (${ }^{\circ}$)

	Molecule A	Molecule B
$\mathrm{Re}-\mathrm{Cl}(1)$	$2.418(5)$	$2.428(5)$
$\mathrm{Re}-\mathrm{Cl}(2)$	$2.355(7)$	$2.345(7)$
$\mathrm{Re}-\mathrm{P}(1)$	$2.468(4)$	$2.461(4)$
$\mathrm{Re}-\mathrm{O}(1)$	$1.680(13)$	$1.639(13)$
$\mathrm{Re}-\mathrm{O}(2)$	$1.923(13)$	$1.862(14)$
$\mathrm{Re}-\mathrm{N}(1)$	$2.205(18)$	$2.206(18)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	$87.8(3)$	$87.7(3)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{P}(2)$	$177.8(3)$	$177.4(2)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{O}(1)$	$97.1(4)$	$97.5(5)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{O}(2)$	$94.4(4)$	$92.3(5)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{N}(1)$	$88.2(5)$	$87.0(5)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{P}(1)$	$89.9(2)$	$91.9(2)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{O}(1)$	$101.8(6)$	$100.6(5)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{O}(2)$	$90.2(4)$	$92.0(6)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{N}(1)$	$164.3(5)$	$165.2(5)$
$\mathrm{P}(1)-\mathrm{Re}-\mathrm{O}(1)$	$83.4(4)$	$85.1(4)$
$\mathrm{P}(1)-\mathrm{Re}-\mathrm{O}(2)$	$85.6(4)$	$85.1(5)$
$\mathrm{P}(1)-\mathrm{Re}-\mathrm{N}(1)$	$93.9(4)$	$92.8(4)$
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{O}(2)$	$163.7(6)$	$164.3(7)$
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{N}(1)$	$93.8(7)$	$93.9(6)$
$\mathrm{O}(2)-\mathrm{Re}-\mathrm{N}(1)$	$75.0(6)$	$74.4(7)$

The H atoms, with the exception of the missing water H atoms, were included in calculated positions, but were not refined. Only a common variable displacement parameter was applied to them.

Data collection: SHELXTL-Plus (Sheldrick, 1987). Cell refinement: SHELXTL-Plus. Data reduction: SHELXTL-Plus. Program(s) used to solve structure: SHELXTL-Plus. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus.

TIAG and JGHP are grateful to the Foundation for Research Development and the University of Port Elizabeth for financial support.

Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: AB1373). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Bandoli, G., Gerber, T. I. A., Jacobs, R. \& Du Preez, J. G. H. (1994). Inorg. Chem. 33, 178-179.
Du Preez, J. G. H., Gerber, T. I. A. \& Kemp, H. J. (1992). J. Coord. Chem. 25, 139-148.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gerber, T. I. A., Kemp, H. J., Du Preez, J. G. H. \& Bandoli, G. (1993). J. Coord. Chem. 28, 329-336.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Nyburg, S. C. (1974). Acta Cryst. B30, 251-255.
Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet R3m/V Crystallographic System. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 219-222

A Tetranuclear Iron Cluster Complex: $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}_{3}\left\{\mu_{3}-\mathrm{CC}\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]-\right.\right.$ $\mathbf{C}\left(\mathbf{C F}_{3}\right)$ \}]

Kenneth W. Muir, ${ }^{a}$ Ljubica Manojlović-Muir, ${ }^{a}$ Fiona Morrice, ${ }^{a}$ Karine Guennou, ${ }^{b}$ François Pétillon ${ }^{b}$ and René Rumin ${ }^{b}$
${ }^{a}$ Chemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland, and ${ }^{b}$ URA CNRS 322, Chimie, Electrochimie Moléculaires et Chimie Analytique, Faculté des Sciences et Techniques, Université de Bretagne Occidentale, BP 452, 29275 Brest CEDEX, France. E-mail: ken@chem.gla.ac.uk
(Received 23 July 1996; accepted 9 October 1996)

Abstract

Undecacarbonyl[4(η^{5})-cyclopentadienyl]- $\mu_{3}-(4,4,4$-tri-Iluorobutaneheptayl)-tetrairon $(3 \mathrm{Fe}-\mathrm{Fe}),\left[\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}_{3^{-}}\right.$ $\left.\left\{\mu_{3}-\mathrm{CC}\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}\right] \mathrm{C}\left(\mathrm{CF}_{3}\right)\right\}\right]$ (Cp is $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) contains a triangular $\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}_{3}$ core $[\mathrm{Fe}-\mathrm{Fe}$ distances 2.482 (1), 2.663 (1) and 2.693 (1) \AA] linked via an unusual $\mathrm{C}_{3} \mathrm{CF}_{3}$ bridging unit to an $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}$ p group.

Comment

The dinuclear complex $\left[\{\mathrm{Cp}(\mathrm{CO}) \mathrm{Fe}\}_{2}\left\{\mu-\mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}-\right.\right.$ SMe $\left.\}_{2}\right] \quad\left(\mathrm{Cp}\right.$ is $\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, (1), reacts with triiron dodecacarbonyl $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right.$] to give $\mu_{3}-\eta^{2}$-alkyne

Acta Crystallographica Section C
Printed in Great Britain - all rights reserved
$\mathrm{Fe}_{3} \mathrm{C}_{2}$ and $\mathrm{Fe}_{2} \mathrm{SC}_{2}$ five-vertex polyhedral cluster complexes (3) and (4), and di- and triiron derivatives $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}_{2}\left(\mu\right.\right.$-SMe) $\left\{\mu\right.$ - $\left.\left.\mathrm{C}_{2} \mathrm{H}^{2}\left(\mathrm{CF}_{3}\right)_{2}\right\}\right],\left[\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}_{2}\{\mu\right.$ $\left.\left.\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{CCFeCp}(\mathrm{CO})_{2}\right\}\right]$, (5), and $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}_{2}\{\mu-\mathrm{C}-\right.$ (SMe) $\left(\mathrm{CF}_{3}\right) \mathrm{CCF}_{2}$ \}], (6) (Rumin, Pétillon, ManojlovićMuir \& Muir, 1990). Because of their unusual chemical behaviour (Rumin, Pétillon, Manojlović-Muir, Muir \& Yufit, 1995), we have tried to obtain compounds (5) and (6) in greater yield by modifying the preparation. To this end, we examined the thermal reaction of (1) in toluene with diiron nonacarbonyl, $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ (see scheme). In addition to the previously known compounds (3)-(6), we obtained in low yield a new tetrairon complex $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}_{3}\left\{\mu_{3}-\mathrm{CC}\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp]C}\left(\mathrm{CF}_{3}\right)\right\}\right]\right.$, (2), whose structural and spectroscopic characterization we now describe.

(1)

(3) (3%)

(4) (8%)

(2) (6%)

As can be seen from Fig. 1, complex (2) contains a triangular $\mathrm{Fe} 1 \mathrm{Fe} 2 \mathrm{Fe} 3(\mathrm{CO})_{9}$, unit which completes its expected 48 electron count by accepting six electrons from the unusual $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{CF}_{3}$ ligand. The

Fig. 1. A view of the title molecule showing 30% probability ellipsoids, except for H atoms which are represented as spheres of arbitrary radii. Carbonyl C atoms are numbered as the O atoms.
attachment of this chain of four C atoms to the Fe_{3} triangle can be described in terms of a bridging π allylic interaction between $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ and the Fe Fe 3 bond; the terminal C atoms (C 1 and C 3) interact more strongly with the metal atoms than does C 2 , which binds weakly to Fe 1 [Fel - C 22.254 (4) \AA] and not at all to $\mathrm{Fe} 3[\mathrm{Fe} 3 \cdots \mathrm{C} 22.716$ (4) A$]$. In contrast, the $\mathrm{Fe} 2-\mathrm{Cl}$ distance is short enough $[1.773$ (4) \AA A to suggest that the bond has some multiple character and also that Cl adopts $s p$-hybridization, a view consistent with the near linearity of the $\mathrm{Fe} 2-\mathrm{C} 1-\mathrm{C} 2$ angle [165.1 (3) ${ }^{\circ}$]. An $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}$ substituent is attached to the C2 atom which is almost coplanar with atoms C1, C 3 and Fe 4 [the torsion angles $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$ and $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{Fe} 4$ are 172.6 (4) and -3.1 (7) ${ }^{\circ}$, respectively]. Although the lengths of the $\mathrm{Fe} 1-\mathrm{Fe} 2$ and $\mathrm{Fe} 2-$ Fe 3 bonds are normal, the bridged $\mathrm{Fe} 1-\mathrm{Fe} 3$ bond is unusually short [2.482 (1) A] . A database search gave a mean length for $645 \mathrm{Fe}-\mathrm{Fe}$ bonds in trinuclear clusters of $2.621 \AA$ (Allen et al., 1979), with 80% of the individual values in the range $2.505-2.738 \AA$. Other bond lengths are consistent with the proposed structure and agree with accepted values; the $\mathrm{Fe}-\mathrm{CO}$ bond lengths range between 1.751 (6) and 1.823 (6) \AA, with a mean of $1.789 \AA$, close to that of $1.782 \AA$ reported by Orpen et al. (1992). The C11 and C18 carbonyl ligands are very weakly semi-bridging [Fe3 \cdots C11 2.715 (5) and $\mathrm{Fe} 2 \cdots \mathrm{C} 182.726(6) \AA$ A and appreciably bent, with $\mathrm{Fe}-$ $\mathrm{C}-\mathrm{O}$ angles of $171.8(5)$ and 171.1 (6) ${ }^{\circ}$ [cf. $175.7(6)-$ $179.0(4)^{\circ}$ for the other nine CO groups].
Spectroscopic assignments are consistent with the results of the structure analysis. The IR spectrum thus displays five absorptions between 2085 and $1960 \mathrm{~cm}^{-1}$ which are assigned to $\nu(\mathrm{CO})$ stretching vibrations. The
${ }^{19} \mathrm{~F}$ NMR spectrum exhibits a singlet at $\delta-56.65$ indicating the presence of a single CF_{3} group. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum contains a quartet at $\delta 129.8$ $\left(J_{\mathrm{CF}}=277 \mathrm{~Hz}\right.$) attributed to the CF_{3} group and three resonances in the CO region, with areas in the ratio 2:6:3 consistent with the IR assignment. Resonances attributable to quaternary C atoms are observed at $\delta 139.0\left(q,{ }^{2} J_{\mathrm{CF}}=35 \mathrm{~Hz}\right), 152.8\left(q,{ }^{3} J_{\mathrm{CF}}=4.5 \mathrm{~Hz}\right)$ and $254.3\left(q,{ }^{4} J_{\mathrm{CF}}=1.5 \mathrm{~Hz}\right)$. The low-field shift of the last carbon resonance suggests carbyne-like character.

In crystals of (2), the intermolecular contacts are consistent with normal van der Waals radii; the shortest intermolecular $\mathrm{O} \cdots \mathrm{O}$ contact is that of $2.948(7) \AA$ between O12 and $\mathrm{O} 16^{\mathrm{i}}$ [symmetry code: (i) $1-x,-y$, $1-z]$. The contacts $\mathrm{O} 14 \cdots \mathrm{H} 6^{\mathrm{ii}}$ and $\mathrm{O} 17 \cdots \mathrm{H} 5^{\mathrm{iii}}$ meet the criteria suggested by Braga, Grepioni, Biradha, Pedireddi \& Desiraju (1995) for $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding in crystals of metal carbonyls [O14 $\cdots \cdot \mathrm{H}^{\text {ii }}$ $2.68 \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 128^{\circ} ; \mathrm{O} 17 \cdots \mathrm{H} 5^{\mathrm{iii}} 2.65 \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 122^{\circ}$; symmetry codes: (ii) $\frac{1}{2}-x, \frac{1}{2}-y$, $1-z$; (iii) $x, \quad 1-y, \frac{1}{2}+z ; \mathrm{C}-\mathrm{H}$ bond lengths were renormalized from 0.93 to $1.08 \AA$ for these calculations].

Experimental

$\left[\{\mathrm{Cp}(\mathrm{CO}) \mathrm{Fe}\}_{2}\left\{\mu-\mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{SMe}\right\}_{2}\right]$, (1) $(6 \mathrm{~g}, 0.83 \mathrm{mmol})$, and seven equivalents of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}(5.81 \mathrm{mmol})$ were heated in toluene (200 ml) under reflux for 4 h . The toluene was removed under vacuum and the residue extracted with dichloromethane. Filtration through celite followed by elution with hexane-dichloromethane ($75: 25$) down a silica gel column gave a maroon band of compound (2). Recrystallization gave a maroon solid (yield 6%). Mass spectrum (m / z): 646 $\left[\mathrm{M}-2 \mathrm{CO}^{+}, 562\left[\mathrm{M}-\mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}, 534,506,478,450,422\right.$, 394, 366, $338\left[\mathrm{M}-\mathrm{Fe}(\mathrm{CO})_{3}-n \mathrm{CO}\right]^{+}(n=1-8)$. Chemical shifts (δ) in p.p.m. measured in CDCl_{3} at room temperature $(J$ in Hz$):{ }^{1} \mathrm{H} 5.20\left(s, \mathrm{C}_{5} \mathrm{H}_{5}\right) ;{ }^{19} \mathrm{~F}-56.65\left(s, \mathrm{CF}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $86.4\left(s, \mathrm{C}_{5} \mathrm{H}_{5}\right), 129.8\left(q, \mathrm{CF}_{3},{ }^{\prime} J_{\mathrm{CF}}=277\right), 139.0\left(q, \mathrm{C}-\mathrm{CF}_{3}\right.$, $\left.{ }^{2} J_{\mathrm{CF}}=35\right), 152.8\left[q, \mathrm{C}-\mathrm{FeCp}(\mathrm{CO})_{2},{ }^{3} J_{\mathrm{CF}}=4.5\right], 208.4(s$, $3 \mathrm{CO}), 210.8(s, 6 \mathrm{CO}), 213.4\left[s, 2 \mathrm{CO}, \mathrm{FeCp}(\mathrm{CO})_{2}\right]$ and 254.3 $\left(q, \mathrm{Fe}=\mathrm{C},{ }^{4} J_{\mathrm{CF}}=1.5\right)$. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution) 1960, 1985, 2020, 2040 and 2085.

Crystal data

$\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{~F}_{3}\right)(\mathrm{CO})_{11}\right]$
$M_{r}=701.64$
Monoclinic
C2/c
$a=29.3869$ (14) \AA
$b=12.1954(8) \AA$
$c=13.5700(9) \AA$
$\beta=103.845(5)^{\circ}$
$V=4722.0(5) \AA^{3}$
$Z=8$
$D_{x}=1.974 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=16.1-20.0^{\circ}$
$\mu=2.491 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$ Maroon
$R_{\text {int }}=0.0322$
$\theta_{\text {max }}=26^{\circ}$
$\omega / 2 \theta$ scans
Absorption correction: none 4836 measured reflections
4624 independent reflections 2784 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R(F)=0.0406$
$w R\left(F^{2}\right)=0.0941$
$S=1.023$
4623 reflections
343 parameters
H atoms riding with $U(\mathrm{H})=$ $1.2 U_{\mathrm{cq}}(\mathrm{C})$
$h=-35 \rightarrow 36$
$k=-15 \rightarrow 0$
$l=-16 \rightarrow 0$
3 standard reflections
frequency: 120 min intensity decay: none

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0396 P)^{2}\right. \\
\quad+3.1396 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.37 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. } \mathrm{C} \text {) }
\end{gathered}
$$

Table 1. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$

Fel-Cl	2.038 (4)	$\mathrm{Fe} 4-\mathrm{C} 2$	1.974 (4)
Fel-C3	2.040 (4)	$\mathrm{Fe} 4-\mathrm{C} 7$	2.099 (5)
Fel-C2	2.254 (4)	Fe4-C6	2.099 (4)
$\mathrm{Fel}-\mathrm{Fe} 3$	2.4824 (9)	$\mathrm{Fe} 4-\mathrm{C} 8$	2.100 (5)
$\mathrm{Fel}-\mathrm{Fe} 2$	2.6928 (9)	Fe4--C9	2.104 (4)
$\mathrm{Fe} 2-\mathrm{Cl}$	1.773 (4)	$\mathrm{Fe} 4-\mathrm{C} 5$	2.109 (5)
$\mathrm{Fe} 2-\mathrm{Fe} 3$	2.6628 (10)	$\mathrm{C} 1-\mathrm{C} 2$	1.414 (5)
$\mathrm{Fe} 3-\mathrm{C} 3$	2.004 (4)	C2-C3	1.425 (6)
$\mathrm{Fe} 3-\mathrm{Cl}$	2.095 (4)	C3-C4	1.488 (6)
$\mathrm{C} 1-\mathrm{Fel}-\mathrm{C} 3$	60.9 (2)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Fe} 1$	79.3 (2)
$\mathrm{Cl}-\mathrm{Fe} 1-\mathrm{C} 2$	38.05 (14)	$\mathrm{Fe} 2-\mathrm{Cl}-\mathrm{Fel}$	89.7 (2)
C3-Fel-C2	38.35 (15)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Fe} 3$	99.6 (3)
$\mathrm{Cl}-\mathrm{Fel}-\mathrm{Fe} 3$	54.15 (11)	$\mathrm{Fe} 2-\mathrm{Cl}-\mathrm{Fe} 3$	86.6 (2)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{Fe} 3$	51.49 (12)	$\mathrm{Fel}-\mathrm{Cl}-\mathrm{Fe} 3$	73.82 (13)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Fe} 3$	69.80 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	93.4 (3)
$\mathrm{C} 1-\mathrm{Fel}-\mathrm{Fe} 2$	41.17 (12)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Fe} 4$	129.6 (3)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{Fe} 2$	96.98 (12)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Fe} 4$	136.9 (3)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Fe} 2$	78.86 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Fe} 1$	62.7 (2)
$\mathrm{Cl}-\mathrm{Fe} 2-\mathrm{Fe} 3$	51.76 (13)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Fe} 1$	62.7 (2)
$\mathrm{Cl}-\mathrm{Fe} 2-\mathrm{Fe} 1$	49.18 (13)	$\mathrm{Fe} 4-\mathrm{C} 2-\mathrm{Fel}$	134.9 (2)
C3-Fe3-Cl	60.5 (2)	C2-C3-C4	124.7 (4)
$\mathrm{C} 3-\mathrm{Fe} 3-\mathrm{Fel}$	52.79 (12)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Fe} 3$	103.5 (3)
$\mathrm{Cl}-\mathrm{Fe} 3-\mathrm{Fel}$	52.03 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Fe} 3$	127.1 (3)
$\mathrm{C} 3-\mathrm{Fe} 3-\mathrm{Fe} 2$	98.83 (12)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Fel}$	79.0 (2)
$\mathrm{Cl}-\mathrm{Fe} 3-\mathrm{Fe} 2$	41.64 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Fe} 1$	129.4 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Fe} 2$	165.1 (3)	$\mathrm{Fe} 3-\mathrm{C} 3-\mathrm{Fel}$	75.72 (15)

Reactions were performed under argon using standard Schlenk techniques and solvents were deoxygenated and dried by standard methods. IR spectra were obtained with a Perkin Elmer 1430. The mass spectrum was measured on a GC/MS Hewlett Packard 5595C. NMR spectra $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ and $\left.{ }^{19} \mathrm{~F}\right)$ in CDCl_{3} were recorded on a Jeol FX 100, a Bruker AC300 or Bruker DRX 400 and were referenced to $\mathrm{Me}_{4} \mathrm{Si}$ and CFCl_{3}. The irregular shape of the crystal precluded a satisfactory analytical absorption correction. An empirical absorption correction based on ψ scans gave a less satisfactory refinement than that reported here. Transmission factors are estimated to be ca $0.72-0.81$. The database searches were made with the EPSRC Chemical Database Service at Daresbury Laboratory, Warrington, England, on the January 1996 version of the Cambridge Structural Database (Allen et al., 1979).

Data collection: CAD-4 Express (Enraf-Nonius, 1992). Cell refinement: CAD-4 Express. Data reduction: GX (Mallinson \& Muir, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure:

SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIFWRITE (Pawson \& Muir, 1996) and PLATON (Spek, 1995).

The authors wish to thank EPSRC, CNRS and the Universities of Glasgow and Brest for financial support.

Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: CF1141). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A.. Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson. D. G. (1979). Acta Crust. B35, 2331-2339.

Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. \& Desiraju, G. R. (1995). J. Am. Chem. Soc. 117. 3156-3166.

Enraf-Nonius (1992). CAD-4 Express. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mallinson, P. R. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 5I-53.
Orpen, A. G., Brammer, L., Allen, F. H.. Kennard, O.. Watson, D. G. \& Taylor, R. (1992). International Tables for Crystallography, Vol. C. Dordrecht: Kluwer.

Pawson, A. J. \& Muir, K. W. (1996). CIFWRITE. Program for the Completion of CIFs for Publication. University of Glasgow, Scotland.
Rumin, R., Pétillon, F. Y., Manojlović-Muir, Lj. \& Muir, K. W. (1990). Organometallics, 9, 944-950.

Rumin, R., Pétillon, F. Y., Manojlović-Muir, Lj., Muir, K. W. \& Yufit. D. (1995). J. Chem. Soc. Chem. Commun. pp. 1431-I432.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crustal Structures. University of Göttingen, Germany.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Spek, A. L. (1995). PLATON. Molecular Geometr: Program. Version of October 1995. University of Utrecht. The Netherlands.

